Oscars de Hollywood

GP: 81 | W: 11 | L: 69 | OTL: 1 | P: 23
GF: 123 | GA: 367 | PP%: 1.97% | PK%: 79.25%
GM : Dom the doc Mailloux | Morale : 75 | Team Overall : 63
Next Games #1056 vs San Diego Gulls
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Alex Iafallo (R)0X100.006441867867839269676965666853524282700
2Kyle Clifford0X100.008644727179766764306365597171666594690
3Oscar Lindberg0X100.006941817274788064666166637458545996680
4Jordan Nolan0XX100.007646677083748663306262576864594096680
5Michael Mersch0X100.006941756081728262506262606251515887650
6Ty Rattie0X100.006042776470758465536265606652517478650
7Alex Burmistrov0X100.006038797368525563586156645764645586620
8Emile Poirier0X100.006043716074598258506054605450508087610
9David Clarkson0X100.00706366697149495942515855567669799600
10Anthony Richard0X100.005444686041659258505660606050504486600
11Robin Kovacs (R)0X100.004635797665464953305047525354509587540
12Chad Ruhwedel0X100.007341856666776167305661696854523679640
13Travis Dermott0X100.006744815974688265306053636151517778630
14Patrick Wiercioch0X100.006444685084587560305550605761566286600
15Rinat Valiev0X100.006743735184526458305049625750506698580
Scratches
TEAM AVERAGE100.00664375657266736243595861625755578863
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Laurent Brossoit100.00747880847677767575727252634796670
2Jhonas Enroth100.00665969577368697274697470663167620
Scratches
TEAM AVERAGE100.0070697571757373747571736165398265
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Pascal Vincent86716669546478QUE493330,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Ty RattieOscars de Hollywood (LAK)RW805212641012092872708423319.26%11485510.7000000000002163.27%4900071.5000000830
2Chad RuhwedelOscars de Hollywood (LAK)D81332558-465753041641446610722.92%410172721.3300032700002300.00%000030.6701100255
3Travis DermottOscars de Hollywood (LAK)D80131225-483752339365255820.00%288114314.300000000000100.00%000020.4400001024
Team Total or Average2419849147-841061062934447917539820.46%812372715.47000327000026163.27%49000120.790110110109
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jhonas EnrothOscars de Hollywood (LAK)81116910.9304.42474214234949910200.00028101577
Team Total or Average81116910.9304.42474214234949910200.00028101577


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Alex BurmistrovOscars de Hollywood (LAK)C261991-10-21No180 Lbs185 CMNoNoNo1RFAPro & Farm900,000$0$0$No
Alex IafalloOscars de Hollywood (LAK)C241993-12-21Yes185 Lbs183 CMNoNoNo4RFAPro & Farm750,000$0$0$No750,000$750,000$750,000$Link
Anthony RichardOscars de Hollywood (LAK)C211996-12-20No163 Lbs155 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Chad RuhwedelOscars de Hollywood (LAK)D281990-05-07No191 Lbs180 CMNoNoNo2UFAPro & Farm750,000$0$0$No750,000$Link
David ClarksonOscars de Hollywood (LAK)RW341984-03-31No207 Lbs183 CMNoNoNo1UFAPro & Farm500,000$0$0$No
Emile PoirierOscars de Hollywood (LAK)LW231994-12-14No196 Lbs188 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Jhonas EnrothOscars de Hollywood (LAK)G301988-06-25No175 Lbs178 CMNoNoNo2UFAPro & Farm2,000,000$0$0$No2,000,000$
Jordan NolanOscars de Hollywood (LAK)C/RW291989-06-23No219 Lbs191 CMNoNoNo2UFAPro & Farm900,000$0$0$No900,000$Link
Kyle CliffordOscars de Hollywood (LAK)LW271991-01-13No211 Lbs188 CMNoNoNo1RFAPro & Farm900,000$0$0$NoLink
Laurent BrossoitOscars de Hollywood (LAK)G251993-03-23No204 Lbs191 CMNoNoNo4RFAPro & Farm1,500,000$0$0$No1,500,000$1,500,000$1,500,000$Link
Michael MerschOscars de Hollywood (LAK)LW251992-10-02No213 Lbs188 CMNoNoNo1RFAPro & Farm513,600$0$0$NoLink
Oscar LindbergOscars de Hollywood (LAK)C261991-10-29No202 Lbs185 CMNoNoNo1RFAPro & Farm600,000$0$0$NoLink
Patrick WierciochOscars de Hollywood (LAK)D271990-09-12No202 Lbs196 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Rinat ValievOscars de Hollywood (LAK)D231995-05-11No215 Lbs191 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Robin KovacsOscars de Hollywood (LAK)LW211996-11-16Yes176 Lbs183 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$
Travis DermottOscars de Hollywood (LAK)D211996-12-22No208 Lbs183 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Ty RattieOscars de Hollywood (LAK)RW251993-02-05No184 Lbs180 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1725.59196 Lbs183 CM1.88856,682$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
131122
226122
323122
4Ty Rattie20122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
131122
2Chad Ruhwedel26122
3Travis Dermott23122
4Chad Ruhwedel20122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
155122
245122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Chad Ruhwedel45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
155122
245122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Chad Ruhwedel45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
15512255122
245122Chad Ruhwedel45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
155122
245122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Chad Ruhwedel45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
Chad Ruhwedel, , Travis DermottChad RuhwedelChad Ruhwedel,
Penalty Shots
, , , ,
Goalie
#1 : Jhonas Enroth, #2 :
Custom OT Lines Forwards
, , , , , , , , , Ty Rattie,
Custom OT Lines Defensemen
, , Chad Ruhwedel, , Travis Dermott


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Belleville Senators40400000420-162020000029-720200000211-900.00046100054373023537943841552617210349111.11%5180.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
2Brooklyn Wolfpack330000002512411000000808220000001711661.00025416602543730221037943841555916069100.00%000.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
3Bruins de Providence40400000224-2220200000113-1220200000111-1000.000235005437302243794384155351814241300.00%10100.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
4Chicago Wolves20200000014-141010000009-91010000005-500.00000000543730213379438415512454418100.00%20100.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
5Cleveland Monsters30300000120-1920200000114-131010000006-600.00011200543730229379438415523278631400.00%30100.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
6Colorado Eagles30300000117-1620200000112-111010000005-500.00011200543730215379438415520656228800.00%10100.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
7Cornwall Aces42200000141222020000038-522000000114740.50014243800543730292379438415522461758200.00%10100.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
8Hershey Bears2020000006-61010000004-41010000002-200.0000000054373029379438415513744218600.00%10100.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
9Huberdeau Prison40400000314-112020000028-62020000016-500.00035800543730234379438415526171232400.00%110.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
10Laval Rockets2020000016-51010000014-31010000002-200.00011200543730213379438415511047213400.00%10100.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
11Lehigh Valley Phantoms40400000026-2620200000015-1520200000011-1100.000000005437302343794384155290686411400.00%3166.67%0168104716.05%434431610.06%149113113.17%8415543257517772277
12Manitoba Moose40400000423-1920200000213-1120200000210-800.00046100054373023437943841552888414335120.00%7271.43%0168104716.05%434431610.06%149113113.17%8415543257517772277
13Milwaukee Admirals2020000009-91010000005-51010000004-400.0000000054373029379438415512237415500.00%20100.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
14Mont-Laurier Sommet40400000218-1620200000110-92020000018-700.00024600543730228379438415527871442600.00%2150.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
15PV Sharapovas40400000221-1920200000010-1020200000211-900.00024600543730232379438415525980631800.00%3166.67%0168104716.05%434431610.06%149113113.17%8415543257517772277
16Red Deer Spartans2020000009-91010000005-51010000004-400.0000000054373029379438415511440830500.00%4175.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
17Rockford IceHogs20200000412-81010000026-41010000026-400.000461000543730220379438415511745019400.00%000.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
18San Diego Gulls20200000211-91010000016-51010000015-400.000235005437302173794384155148271124600.00%20100.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
19St-Jerome Panthers40400000420-162020000028-620200000212-1000.000461000543730232379438415530078641600.00%30100.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
20Syracuse Crunch44000000385332200000020218220000001831581.0003866104005437302395379438415557120110000.00%000.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
21Tigres Victoriaville40300001617-112010000138-52020000039-610.1256915005437302333794384155324874307114.29%10100.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
22Toronto Marlies40400000118-171010000005-530300000113-1200.000112005437302183794384155245672501600.00%110.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
Total8196902001123367-244413360100155202-147406330100068165-97230.142123200323025437302123537943841555161146812490315231.97%531179.25%0168104716.05%434431610.06%149113113.17%8415543257517772277
24Tucson Roadrunners40400000122-2120200000011-1120200000111-1000.00011200543730221379438415530075835900.00%4175.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
25Utica Comets40400000117-1630300000114-131010000003-300.000123005437302323794384155285841031900.00%4175.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
26Wilkes-Barrie Penguins20002000752100010004311000100032141.000710170054373024737943841556933246000.00%10100.00%0168104716.05%434431610.06%149113113.17%8415543257517772277
_Since Last GM Reset8196902001123367-244413360100155202-147406330100068165-97230.142123200323025437302123537943841555161146812490315231.97%531179.25%0168104716.05%434431610.06%149113113.17%8415543257517772277
_Vs Conference486410000180222-142242210000136115-79244200000044107-63130.1358013421400543730279437943841553193840715118333.61%31874.19%0168104716.05%434431610.06%149113113.17%8415543257517772277
_Vs Division260230000162106-4412011000012751-2414012000003555-2010.0196210516700543730260937943841551507420313205211.92%12375.00%0168104716.05%434431610.06%149113113.17%8415543257517772277

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8123W212320032312355161146812490302
All Games
GPWLOTWOTL SOWSOLGFGA
819692001123367
Home Games
GPWLOTWOTL SOWSOLGFGA
41336100155202
Visitor Games
GPWLOTWOTL SOWSOLGFGA
40633100068165
Last 10 Games
WLOTWOTL SOWSOL
280000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
15231.97%531179.25%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
37943841555437302
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
168104716.05%434431610.06%149113113.17%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
8415543257517772277


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-08-1513Tigres Victoriaville5Oscars de Hollywood1LBoxScore
2 - 2018-08-1620Oscars de Hollywood1Toronto Marlies6LBoxScore
4 - 2018-08-1839Utica Comets4Oscars de Hollywood0LBoxScore
6 - 2018-08-2056Belleville Senators5Oscars de Hollywood1LBoxScore
7 - 2018-08-2171Oscars de Hollywood9Brooklyn Wolfpack0WBoxScore
8 - 2018-08-2279Oscars de Hollywood0Toronto Marlies5LBoxScore
9 - 2018-08-2387Colorado Eagles5Oscars de Hollywood0LBoxScore
11 - 2018-08-25108PV Sharapovas4Oscars de Hollywood0LBoxScore
12 - 2018-08-26122Oscars de Hollywood0St-Jerome Panthers5LBoxScore
13 - 2018-08-27130Oscars de Hollywood0Belleville Senators4LBoxScore
14 - 2018-08-28140Huberdeau Prison5Oscars de Hollywood1LBoxScore
16 - 2018-08-30150Oscars de Hollywood0Manitoba Moose5LBoxScore
17 - 2018-08-31166Bruins de Providence7Oscars de Hollywood0LBoxScore
18 - 2018-09-01185Oscars de Hollywood2Rockford IceHogs6LBoxScore
19 - 2018-09-02191Manitoba Moose9Oscars de Hollywood1LBoxScore
21 - 2018-09-04205Oscars de Hollywood1Tucson Roadrunners4LBoxScore
23 - 2018-09-06220Mont-Laurier Sommet7Oscars de Hollywood1LBoxScore
24 - 2018-09-07236Chicago Wolves9Oscars de Hollywood0LBoxScore
25 - 2018-09-08245Oscars de Hollywood0Hershey Bears2LBoxScore
26 - 2018-09-09259Oscars de Hollywood8Brooklyn Wolfpack1WBoxScore
27 - 2018-09-10268Milwaukee Admirals5Oscars de Hollywood0LBoxScore
28 - 2018-09-11288Utica Comets5Oscars de Hollywood1LBoxScore
29 - 2018-09-12304Oscars de Hollywood3Wilkes-Barrie Penguins2WXBoxScore
30 - 2018-09-13313Belleville Senators4Oscars de Hollywood1LBoxScore
31 - 2018-09-14328Oscars de Hollywood0Red Deer Spartans4LR3BoxScore
32 - 2018-09-15334Oscars de Hollywood0Chicago Wolves5LBoxScore
33 - 2018-09-16346Colorado Eagles7Oscars de Hollywood1LBoxScore
35 - 2018-09-18362Oscars de Hollywood0Milwaukee Admirals4LBoxScore
37 - 2018-09-20374Brooklyn Wolfpack0Oscars de Hollywood8WBoxScore
39 - 2018-09-22395San Diego Gulls6Oscars de Hollywood1LR3BoxScore
40 - 2018-09-23398Oscars de Hollywood0Lehigh Valley Phantoms7LBoxScore
42 - 2018-09-25419Mont-Laurier Sommet3Oscars de Hollywood0LBoxScore
43 - 2018-09-26430Oscars de Hollywood0Toronto Marlies2LBoxScore
44 - 2018-09-27438Oscars de Hollywood0Tucson Roadrunners7LBoxScore
46 - 2018-09-29452Tigres Victoriaville3Oscars de Hollywood2LXXBoxScore
47 - 2018-09-30469Rockford IceHogs6Oscars de Hollywood2LBoxScore
48 - 2018-10-01482Oscars de Hollywood0Utica Comets3LBoxScore
50 - 2018-10-03497Oscars de Hollywood6Cornwall Aces1WBoxScore
51 - 2018-10-04504Cornwall Aces4Oscars de Hollywood2LBoxScore
53 - 2018-10-06522Oscars de Hollywood8Syracuse Crunch1WBoxScore
54 - 2018-10-07527Bruins de Providence6Oscars de Hollywood1LBoxScore
56 - 2018-10-09550Oscars de Hollywood2St-Jerome Panthers7LBoxScore
57 - 2018-10-10556Hershey Bears4Oscars de Hollywood0LBoxScore
58 - 2018-10-11570Oscars de Hollywood0Bruins de Providence7LBoxScore
59 - 2018-10-12581Huberdeau Prison3Oscars de Hollywood1LBoxScore
61 - 2018-10-14601Lehigh Valley Phantoms5Oscars de Hollywood0LBoxScore
62 - 2018-10-15603Oscars de Hollywood10Syracuse Crunch2WBoxScore
64 - 2018-10-17627Lehigh Valley Phantoms10Oscars de Hollywood0LBoxScore
65 - 2018-10-18637Oscars de Hollywood0Cleveland Monsters6LBoxScore
66 - 2018-10-19653Tucson Roadrunners6Oscars de Hollywood0LBoxScore
67 - 2018-10-20662Oscars de Hollywood1San Diego Gulls5LR3BoxScore
69 - 2018-10-22679Oscars de Hollywood2Tigres Victoriaville3LBoxScore
70 - 2018-10-23688Laval Rockets4Oscars de Hollywood1LBoxScore
71 - 2018-10-24703Oscars de Hollywood5Cornwall Aces3WBoxScore
72 - 2018-10-25711Toronto Marlies5Oscars de Hollywood0LBoxScore
73 - 2018-10-26724Oscars de Hollywood0PV Sharapovas3LBoxScore
74 - 2018-10-27736Manitoba Moose4Oscars de Hollywood1LBoxScore
76 - 2018-10-29750Oscars de Hollywood2Manitoba Moose5LBoxScore
77 - 2018-10-30761PV Sharapovas6Oscars de Hollywood0LBoxScore
80 - 2018-11-02785Utica Comets5Oscars de Hollywood0LBoxScore
81 - 2018-11-03801Oscars de Hollywood2Belleville Senators7LBoxScore
82 - 2018-11-04810St-Jerome Panthers4Oscars de Hollywood1LBoxScore
83 - 2018-11-05820Oscars de Hollywood2PV Sharapovas8LBoxScore
85 - 2018-11-07832Oscars de Hollywood0Lehigh Valley Phantoms4LBoxScore
86 - 2018-11-08843Cleveland Monsters3Oscars de Hollywood1LBoxScore
88 - 2018-11-10863Tucson Roadrunners5Oscars de Hollywood0LBoxScore
89 - 2018-11-11876Oscars de Hollywood1Bruins de Providence4LBoxScore
90 - 2018-11-12887Oscars de Hollywood0Huberdeau Prison1LBoxScore
91 - 2018-11-13891Wilkes-Barrie Penguins3Oscars de Hollywood4WXBoxScore
92 - 2018-11-14910Oscars de Hollywood0Laval Rockets2LBoxScore
94 - 2018-11-16922Cleveland Monsters11Oscars de Hollywood0LBoxScore
96 - 2018-11-18942Red Deer Spartans5Oscars de Hollywood0LR3BoxScore
97 - 2018-11-19958Oscars de Hollywood0Colorado Eagles5LBoxScore
98 - 2018-11-20965St-Jerome Panthers4Oscars de Hollywood1LBoxScore
99 - 2018-11-21976Oscars de Hollywood1Tigres Victoriaville6LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
100 - 2018-11-22986Oscars de Hollywood1Mont-Laurier Sommet2LBoxScore
102 - 2018-11-24999Oscars de Hollywood1Huberdeau Prison5LBoxScore
103 - 2018-11-251005Cornwall Aces4Oscars de Hollywood1LBoxScore
104 - 2018-11-261014Oscars de Hollywood0Mont-Laurier Sommet6LBoxScore
106 - 2018-11-281028Syracuse Crunch1Oscars de Hollywood10WBoxScore
109 - 2018-12-011049Syracuse Crunch1Oscars de Hollywood10WBoxScore
110 - 2018-12-021056Oscars de Hollywood-San Diego Gulls-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,766,897$ 1,456,360$ 1,456,360$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,448,616$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 4 15,808$ 63,232$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
318196902001123367-244413360100155202-147406330100068165-9723123200323025437302123537943841555161146812490315231.97%531179.25%0168104716.05%434431610.06%149113113.17%8415543257517772277
Total Regular Season8196902001123367-244413360100155202-147406330100068165-9723123200323025437302123537943841555161146812490315231.97%531179.25%0168104716.05%434431610.06%149113113.17%8415543257517772277