Milwaukee Admirals

GP: 81 | W: 46 | L: 32 | OTL: 3 | P: 95
GF: 300 | GA: 185 | PP%: 21.10% | PK%: 85.50%
GM : Louis Bourgault | Morale : 97 | Team Overall : 62
Next Games #1054 vs Brooklyn Wolfpack
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Artturi Lehkonen0X100.006842848066868369306667677156537072700
2Jesse Puljujarvi0X100.006742807083819264306466597154529189690
3Pontus Aberg0XX100.006042817271787467306863616453527389670
4Beau Bennett0X100.006043736174668365307058605858547089650
5William Carrier0X100.008942756979725460606261626553576789650
6Brian Flynn0XXX100.005641766069648362506260606061563589630
7Carter Verhaeghe0X100.005543726072647564676561606150504489620
8Daniel Paille0X100.00563781677246575932545767557669789610
9Sergey Tolchinsky0X100.004842746054536060506257605750504489570
10Dalton Smith0X100.006249546078526251505151605150507389570
11Christian Folin0X100.008643826679778271305861706657593788690
12Jordan Oesterle0X100.006941927466867271306065686953524289680
13Dylan DeMelo0X100.006943766572758077306557676255534789670
14Viktor Svedberg0X100.007847595099539055305046605351533789610
15Nikita Nikitin0X100.005336806083574449303333725072662389550
16Dylan Olsen0X100.005637796580454451303535695562586389540
17Jakub Kindl0X100.006239666377454648303330654872622389530
Scratches
TEAM AVERAGE100.00644276657565696138565564605856508863
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Thatcher Demko100.00727082827379747373716950617686650
2Samuel Montembeault (R)100.00676872816971706969666650594489610
Scratches
1Sam Brittain100.00455062776052505150525562516323500
TEAM AVERAGE100.0061637280676765646463635457616659
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Scott Arniel74697281817251ONT581168,300$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jesse PuljujarviMilwaukee Admirals (NSH)RW813760975522012211334410227110.76%26205025.32512174116722492285247.97%81100020.95130001125
2Pontus AbergMilwaukee Admirals (NSH)LW/RW8138549243320871183579522710.64%20192723.80110113717512341637140.52%30600110.9511000838
3Ryan HartmanPredatorsRW6438407825701025615935610423710.67%10168626.36391231141022101536255.05%114800030.92020021043
4Jordan OesterleMilwaukee Admirals (NSH)D812149702332069561926410710.94%99153718.9911819891911124227600.00%100010.9100000133
5Dylan DeMeloMilwaukee Admirals (NSH)D81165369344406560125397612.80%72147618.2351116591670330195310.00%000000.9300000136
6Carter VerhaegheMilwaukee Admirals (NSH)C8124426643115361362065516511.65%8138817.14371028171000035063.53%151100010.9500100243
7William CarrierMilwaukee Admirals (NSH)LW6428366449740188531925113114.58%6109417.093710191320000183058.46%6500031.1700000543
8Brian FlynnMilwaukee Admirals (NSH)C/LW/RW811936553019543811565211312.18%9120914.943912221761012322054.47%143200020.9100001013
9Christian FolinMilwaukee Admirals (NSH)D6416365232561014372119387813.45%91144622.618513441521124163110.00%000000.7200200442
10Beau BennettMilwaukee Admirals (NSH)RW812428522022087741786315713.48%13129515.990110421321153045.33%7500010.8011000340
11Daniel PailleMilwaukee Admirals (NSH)LW81153247161205565194411357.73%15119814.790000110001303052.44%8200000.7800000222
12Jakub KindlMilwaukee Admirals (NSH)D813212430320762825122812.00%437359.0800004101125010.00%000000.6500000012
13Nikita NikitinMilwaukee Admirals (NSH)D81116171724041453614302.78%59108013.35000412000023000.00%000000.3100000000
14Shea TheodorePredatorsD29610160608295252911.54%2159420.503362969000066010.00%000000.5400000001
15Dylan OlsenMilwaukee Admirals (NSH)D81115162228067343315253.03%50104612.9300000000159000.00%000000.3100000000
16Viktor SvedbergMilwaukee Admirals (NSH)D81691538860195202672523.08%52127515.751012930111115000.00%000000.2400000010
17Sergey TolchinskyMilwaukee Admirals (NSH)LW813811124016226118354.92%15416.680003200000100149.46%9300000.4100000100
18Dalton SmithMilwaukee Admirals (NSH)LW8128101126056255011424.00%46758.34000190001710062.11%16100000.3000000000
Team Total or Average135529855385150060030161011902702786191111.03%5992226316.434682128409170391322401706441055.34%5685001140.7637303483641
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Thatcher DemkoMilwaukee Admirals (NSH)66392250.9072.24393161214715890410.4449660152
2Samuel MontembeaultMilwaukee Admirals (NSH)29111500.8812.73158202726070001.00032652010
3Sam BrittainMilwaukee Admirals (NSH)53000.9421.15209014690000.0000316001
Team Total or Average100533750.9022.34572361522322650410.583129568163


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Artturi LehkonenMilwaukee Admirals (NSH)LW231995-07-04No183 Lbs183 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Beau BennettMilwaukee Admirals (NSH)RW261991-11-27No195 Lbs188 CMNoNoNo1RFAPro & Farm900,000$0$0$NoLink
Brian FlynnMilwaukee Admirals (NSH)C/LW/RW301988-07-26No183 Lbs185 CMNoNoNo2UFAPro & Farm1,750,000$0$0$No1,750,000$Link
Carter VerhaegheMilwaukee Admirals (NSH)C231995-08-14No190 Lbs188 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Christian FolinMilwaukee Admirals (NSH)D271991-02-09No204 Lbs191 CMNoNoNo1RFAPro & Farm800,000$0$0$NoLink
Dalton SmithMilwaukee Admirals (NSH)LW261992-06-30No206 Lbs188 CMNoNoNo3RFAPro & Farm750,000$0$0$No750,000$750,000$Link
Daniel PailleMilwaukee Admirals (NSH)LW341984-04-15No200 Lbs185 CMNoNoNo2UFAPro & Farm1,250,000$0$0$No1,250,000$
Dylan DeMeloMilwaukee Admirals (NSH)D251993-05-01No195 Lbs185 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Dylan OlsenMilwaukee Admirals (NSH)D271991-01-03No223 Lbs188 CMNoNoNo1RFAPro & Farm750,000$0$0$No
Jakub KindlMilwaukee Admirals (NSH)D311987-02-10No199 Lbs191 CMNoNoNo2UFAPro & Farm1,500,000$0$0$No1,500,000$
Jesse PuljujarviMilwaukee Admirals (NSH)RW201998-05-07No211 Lbs193 CMNoNoNo4RFAPro & Farm750,000$0$0$No750,000$750,000$750,000$Link
Jordan OesterleMilwaukee Admirals (NSH)D261992-06-25No182 Lbs183 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Nikita NikitinMilwaukee Admirals (NSH)D321986-06-16No217 Lbs193 CMNoNoNo2UFAPro & Farm1,500,000$0$0$No1,500,000$
Pontus AbergMilwaukee Admirals (NSH)LW/RW241993-09-23No196 Lbs180 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Sam BrittainMilwaukee Admirals (NSH)G261992-05-10No220 Lbs191 CMNoNoNo1RFAPro & Farm500,000$0$0$No
Samuel Montembeault (1 Way Contract)Milwaukee Admirals (NSH)G211996-10-30Yes192 Lbs191 CMNoNoNo3RFAPro & Farm725,000$725,000$6,591$No725,000$725,000$Link
Sergey TolchinskyMilwaukee Admirals (NSH)LW231995-02-03No170 Lbs173 CMNoNoNo5RFAPro & Farm750,000$0$0$No750,000$750,000$750,000$750,000$Link
Thatcher DemkoMilwaukee Admirals (NSH)G221995-12-08No192 Lbs193 CMNoNoNo4RFAPro & Farm750,000$0$0$No750,000$750,000$750,000$Link
Viktor SvedbergMilwaukee Admirals (NSH)D271991-05-24No238 Lbs203 CMNoNoNo3RFAPro & Farm750,000$0$0$No750,000$750,000$Link
William CarrierMilwaukee Admirals (NSH)LW231994-12-20No212 Lbs188 CMNoNoNo4RFAPro & Farm750,000$0$0$No750,000$750,000$750,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2025.80200 Lbs188 CM2.35896,250$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Pontus AbergBrian Flynn31122
2William CarrierCarter VerhaegheJesse Puljujarvi26122
3Daniel PailleBeau Bennett23122
4Dalton SmithJesse PuljujarviPontus Aberg20122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jordan Oesterle31122
2Dylan DeMeloViktor Svedberg26122
3Nikita NikitinDylan Olsen23122
4Jakub Kindl20122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Pontus AbergBrian Flynn55122
2William CarrierCarter VerhaegheJesse Puljujarvi45122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Jordan Oesterle55122
2Dylan DeMeloViktor Svedberg45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Jesse Puljujarvi55122
2Pontus AbergBeau Bennett45122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Jordan Oesterle55122
2Dylan DeMeloViktor Svedberg45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
155122Jordan Oesterle55122
2Jesse Puljujarvi45122Dylan DeMeloViktor Svedberg45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Jesse Puljujarvi55122
2Pontus AbergBeau Bennett45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jordan Oesterle55122
2Dylan DeMeloViktor Svedberg45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Pontus AbergBrian FlynnJordan Oesterle
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Pontus AbergBrian FlynnJordan Oesterle
Extra Forwards
Normal PowerPlayPenalty Kill
Sergey Tolchinsky, Daniel Paille, Dalton SmithSergey Tolchinsky, Daniel PailleDalton Smith
Extra Defensemen
Normal PowerPlayPenalty Kill
Nikita Nikitin, Dylan Olsen, Jakub KindlNikita NikitinDylan Olsen, Jakub Kindl
Penalty Shots
, Jesse Puljujarvi, Pontus Aberg, Beau Bennett, William Carrier
Goalie
#1 : Thatcher Demko, #2 : Samuel Montembeault
Custom OT Lines Forwards
, Jesse Puljujarvi, Pontus Aberg, Beau Bennett, William Carrier, Brian Flynn, Brian Flynn, Carter Verhaeghe, Daniel Paille, Dalton Smith, Sergey Tolchinsky
Custom OT Lines Defensemen
, Jordan Oesterle, Dylan DeMelo, Viktor Svedberg, Nikita Nikitin


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Belleville Senators22000000163131100000010281100000061541.00016304600147727845587594187917411616328675.00%8187.50%01448257456.25%1056225346.87%689125155.08%219316111704532982512
2Brooklyn Wolfpack44000000440441100000011011330000003303381.00044841280414772784330875941879171458802150.00%40100.00%21448257456.25%1056225346.87%689125155.08%219316111704532982512
3Bruins de Providence2020000048-41010000024-21010000024-200.000471100147727845087594187917532620448112.50%10370.00%01448257456.25%1056225346.87%689125155.08%219316111704532982512
4Chicago Wolves42200000811-32110000056-12110000035-240.5008152310147727849387594187917100302790900.00%11281.82%01448257456.25%1056225346.87%689125155.08%219316111704532982512
5Cleveland Monsters420001101293210000107432100010055070.8751220320014772784101875941879171324530838225.00%11281.82%01448257456.25%1056225346.87%689125155.08%219316111704532982512
6Colorado Eagles51300100714-72010010016-53120000068-230.3007142100147727841328759418791715047269515320.00%12283.33%01448257456.25%1056225346.87%689125155.08%219316111704532982512
7Cornwall Aces220000001931611000000936110000001001041.00019355401147727841108759418791735914445360.00%60100.00%21448257456.25%1056225346.87%689125155.08%219316111704532982512
8Hershey Bears41200010990201000104402110000055040.50091524001477278495875941879171053718821317.69%60100.00%01448257456.25%1056225346.87%689125155.08%219316111704532982512
9Huberdeau Prison20200000611-51010000025-31010000046-200.000612180014772784418759418791767182636300.00%13561.54%01448257456.25%1056225346.87%689125155.08%219316111704532982512
10Laval Rockets5220100012120311010008622110000046-260.60012213300147727841178759418791715238447918211.11%210100.00%11448257456.25%1056225346.87%689125155.08%219316111704532982512
11Lehigh Valley Phantoms211000008801010000035-21100000053220.500815230014772784558759418791746182232200.00%10370.00%11448257456.25%1056225346.87%689125155.08%219316111704532982512
12Manitoba Moose22000000633110000003121100000032141.0006121800147727846587594187917411610432150.00%4175.00%01448257456.25%1056225346.87%689125155.08%219316111704532982512
13Mont-Laurier Sommet2110000045-11010000002-21100000043120.500481200147727844687594187917542328496116.67%14192.86%01448257456.25%1056225346.87%689125155.08%219316111704532982512
14Oscars de Hollywood22000000909110000004041100000050541.00091726021477278412287594187917921045200.00%50100.00%01448257456.25%1056225346.87%689125155.08%219316111704532982512
15PV Sharapovas2110000035-2110000002111010000014-320.50036900147727845887594187917531516398112.50%8187.50%01448257456.25%1056225346.87%689125155.08%219316111704532982512
16Red Deer Spartans42200000910-12110000045-12110000055040.50091726001477278495875941879171213434861200.00%17382.35%01448257456.25%1056225346.87%689125155.08%219316111704532982512
17Rockford IceHogs4310000017892200000012392110000055060.7501729460014772784142875941879178932246118422.22%10190.00%01448257456.25%1056225346.87%689125155.08%219316111704532982512
18San Diego Gulls532000001214-23210000078-12110000056-160.600122436001477278417287594187917104317911214535.71%23482.61%01448257456.25%1056225346.87%689125155.08%219316111704532982512
19St-Jerome Panthers211000005411010000012-11100000042220.5005101500147727847187594187917511316355120.00%7185.71%01448257456.25%1056225346.87%689125155.08%219316111704532982512
20Syracuse Crunch22000000250251100000013013110000001201241.00025477202147727841748759418791762232000.00%10100.00%11448257456.25%1056225346.87%689125155.08%219316111704532982512
21Tigres Victoriaville31200000131302110000010911010000034-120.333132437001477278477875941879178833166410330.00%7185.71%01448257456.25%1056225346.87%689125155.08%219316111704532982512
22Toronto Marlies62300001910-1311000016513120000035-250.4179152401147727841358759418791712247361031417.14%16287.50%01448257456.25%1056225346.87%689125155.08%219316111704532982512
Total81433201221300185115402015011211478958412317001001539657950.58630055385311414772784270487594187917189460460616102184621.10%2623885.50%91448257456.25%1056225346.87%689125155.08%219316111704532982512
24Tucson Roadrunners3120000078-1110000004042020000038-520.33371320011477278493875941879177117107013323.08%40100.00%01448257456.25%1056225346.87%689125155.08%219316111704532982512
25Utica Comets42200000812-42020000018-72200000074340.500813210014772784908759418791712032388017423.53%17382.35%01448257456.25%1056225346.87%689125155.08%219316111704532982512
26Wilkes-Barrie Penguins4310000028523220000001801821100000105560.750285078031477278418587594187917701836946350.00%17288.24%21448257456.25%1056225346.87%689125155.08%219316111704532982512
_Since Last GM Reset81433201221300185115402015011211478958412317001001539657950.58630055385311414772784270487594187917189460460616102184621.10%2623885.50%91448257456.25%1056225346.87%689125155.08%219316111704532982512
_Vs Conference5327200122117511461261290112184552927151100100915932630.5941753174921814772784168787594187917127939640010451462617.81%1652187.27%51448257456.25%1056225346.87%689125155.08%219316111704532982512
_Vs Division2013120110056533107501100322751067000002426-2290.72556104160101477278458087594187917519171119388591220.34%51884.31%01448257456.25%1056225346.87%689125155.08%219316111704532982512

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8195L2300553853270418946046061610114
All Games
GPWLOTWOTL SOWSOLGFGA
8143321221300185
Home Games
GPWLOTWOTL SOWSOLGFGA
402015112114789
Visitor Games
GPWLOTWOTL SOWSOLGFGA
412317010015396
Last 10 Games
WLOTWOTL SOWSOL
720100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2184621.10%2623885.50%9
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
8759418791714772784
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1448257456.25%1056225346.87%689125155.08%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
219316111704532982512


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-08-1511Milwaukee Admirals4Laval Rockets3WBoxScore
2 - 2018-08-1614Laval Rockets1Milwaukee Admirals2WXBoxScore
3 - 2018-08-1728Milwaukee Admirals13Brooklyn Wolfpack0WBoxScore
5 - 2018-08-1942Milwaukee Admirals3Colorado Eagles2WBoxScore
6 - 2018-08-2050Utica Comets2Milwaukee Admirals1LBoxScore
7 - 2018-08-2166Milwaukee Admirals1Wilkes-Barrie Penguins5LBoxScore
8 - 2018-08-2274Milwaukee Admirals1Chicago Wolves4LBoxScore
9 - 2018-08-2385San Diego Gulls2Milwaukee Admirals3WBoxScore
11 - 2018-08-25103Milwaukee Admirals1Toronto Marlies3LBoxScore
12 - 2018-08-26111Toronto Marlies1Milwaukee Admirals4WBoxScore
13 - 2018-08-27132Tigres Victoriaville5Milwaukee Admirals4LBoxScore
14 - 2018-08-28138Milwaukee Admirals0San Diego Gulls3LBoxScore
16 - 2018-08-30153San Diego Gulls2Milwaukee Admirals4WBoxScore
17 - 2018-08-31170Milwaukee Admirals2Tucson Roadrunners5LBoxScore
18 - 2018-09-01182Colorado Eagles4Milwaukee Admirals0LBoxScore
20 - 2018-09-03195Hershey Bears2Milwaukee Admirals1LBoxScore
22 - 2018-09-05214Milwaukee Admirals0Laval Rockets3LBoxScore
23 - 2018-09-06225Milwaukee Admirals1Tucson Roadrunners3LBoxScore
24 - 2018-09-07232San Diego Gulls4Milwaukee Admirals0LBoxScore
25 - 2018-09-08249Milwaukee Admirals4Mont-Laurier Sommet3WBoxScore
26 - 2018-09-09258Manitoba Moose1Milwaukee Admirals3WBoxScore
27 - 2018-09-10268Milwaukee Admirals5Oscars de Hollywood0WBoxScore
28 - 2018-09-11286Milwaukee Admirals2Red Deer Spartans3LBoxScore
29 - 2018-09-12292Hershey Bears2Milwaukee Admirals3WXXBoxScore
30 - 2018-09-13310Bruins de Providence4Milwaukee Admirals2LBoxScore
31 - 2018-09-14326Belleville Senators2Milwaukee Admirals10WBoxScore
32 - 2018-09-15330Milwaukee Admirals1PV Sharapovas4LBoxScore
33 - 2018-09-16349Milwaukee Admirals5San Diego Gulls3WBoxScore
35 - 2018-09-18362Oscars de Hollywood0Milwaukee Admirals4WBoxScore
37 - 2018-09-20380Milwaukee Admirals2Colorado Eagles3LBoxScore
38 - 2018-09-21386Milwaukee Admirals9Wilkes-Barrie Penguins0WBoxScore
39 - 2018-09-22393Utica Comets6Milwaukee Admirals0LBoxScore
42 - 2018-09-25415St-Jerome Panthers2Milwaukee Admirals1LBoxScore
43 - 2018-09-26427Milwaukee Admirals2Bruins de Providence4LBoxScore
44 - 2018-09-27437Lehigh Valley Phantoms5Milwaukee Admirals3LBoxScore
46 - 2018-09-29449Milwaukee Admirals10Brooklyn Wolfpack0WBoxScore
47 - 2018-09-30463PV Sharapovas1Milwaukee Admirals2WBoxScore
48 - 2018-10-01481Toronto Marlies3Milwaukee Admirals2LXXBoxScore
50 - 2018-10-03493Milwaukee Admirals3Red Deer Spartans2WBoxScore
51 - 2018-10-04509Milwaukee Admirals6Belleville Senators1WBoxScore
52 - 2018-10-05516Huberdeau Prison5Milwaukee Admirals2LBoxScore
54 - 2018-10-07529Milwaukee Admirals3Tigres Victoriaville4LBoxScore
55 - 2018-10-08544Rockford IceHogs2Milwaukee Admirals10WBoxScore
57 - 2018-10-10562Syracuse Crunch0Milwaukee Admirals13WBoxScore
58 - 2018-10-11572Milwaukee Admirals10Brooklyn Wolfpack0WBoxScore
60 - 2018-10-13588Red Deer Spartans4Milwaukee Admirals1LBoxScore
61 - 2018-10-14591Milwaukee Admirals2Toronto Marlies0WBoxScore
62 - 2018-10-15608Milwaukee Admirals3Cleveland Monsters4LXBoxScore
63 - 2018-10-16624Cornwall Aces3Milwaukee Admirals9WBoxScore
65 - 2018-10-18636Milwaukee Admirals10Cornwall Aces0WBoxScore
66 - 2018-10-19646Milwaukee Admirals2Hershey Bears4LBoxScore
67 - 2018-10-20655Chicago Wolves2Milwaukee Admirals3WBoxScore
69 - 2018-10-22671Toronto Marlies1Milwaukee Admirals0LBoxScore
70 - 2018-10-23686Milwaukee Admirals5Lehigh Valley Phantoms3WBoxScore
71 - 2018-10-24696Milwaukee Admirals4Utica Comets2WBoxScore
72 - 2018-10-25706Tucson Roadrunners0Milwaukee Admirals4WBoxScore
73 - 2018-10-26725Laval Rockets2Milwaukee Admirals4WBoxScore
74 - 2018-10-27735Milwaukee Admirals4Huberdeau Prison6LBoxScore
76 - 2018-10-29748Milwaukee Admirals3Hershey Bears1WBoxScore
77 - 2018-10-30758Rockford IceHogs1Milwaukee Admirals2WBoxScore
78 - 2018-10-31769Milwaukee Admirals0Toronto Marlies2LBoxScore
79 - 2018-11-01780Wilkes-Barrie Penguins0Milwaukee Admirals6WBoxScore
81 - 2018-11-03797Milwaukee Admirals2Chicago Wolves1WBoxScore
82 - 2018-11-04804Laval Rockets3Milwaukee Admirals2LBoxScore
84 - 2018-11-06825Milwaukee Admirals1Colorado Eagles3LBoxScore
85 - 2018-11-07835Mont-Laurier Sommet2Milwaukee Admirals0LBoxScore
87 - 2018-11-09855Cleveland Monsters2Milwaukee Admirals3WXXBoxScore
88 - 2018-11-10865Milwaukee Admirals2Cleveland Monsters1WBoxScore
89 - 2018-11-11868Milwaukee Admirals4Rockford IceHogs3WBoxScore
90 - 2018-11-12880Cleveland Monsters2Milwaukee Admirals4WBoxScore
91 - 2018-11-13888Milwaukee Admirals3Utica Comets2WBoxScore
92 - 2018-11-14908Brooklyn Wolfpack0Milwaukee Admirals11WBoxScore
93 - 2018-11-15916Milwaukee Admirals4St-Jerome Panthers2WBoxScore
94 - 2018-11-16930Milwaukee Admirals3Manitoba Moose2WBoxScore
95 - 2018-11-17936Tigres Victoriaville4Milwaukee Admirals6WBoxScore
98 - 2018-11-20961Colorado Eagles2Milwaukee Admirals1LXBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
100 - 2018-11-22982Wilkes-Barrie Penguins0Milwaukee Admirals12WBoxScore
101 - 2018-11-23990Milwaukee Admirals12Syracuse Crunch0WBoxScore
103 - 2018-11-251012Red Deer Spartans1Milwaukee Admirals3WBoxScore
104 - 2018-11-261017Milwaukee Admirals1Rockford IceHogs2LBoxScore
107 - 2018-11-291038Chicago Wolves4Milwaukee Admirals2LBoxScore
110 - 2018-12-021054Brooklyn Wolfpack-Milwaukee Admirals-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
1 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,978,239$ 1,720,000$ 1,720,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,815,876$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 4 16,711$ 66,844$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
31814332012213001851154020150112114789584123170010015396579530055385311414772784270487594187917189460460616102184621.10%2623885.50%91448257456.25%1056225346.87%689125155.08%219316111704532982512
Total Regular Season814332012213001851154020150112114789584123170010015396579530055385311414772784270487594187917189460460616102184621.10%2623885.50%91448257456.25%1056225346.87%689125155.08%219316111704532982512