Toronto Marlies

GP: 81 | W: 55 | L: 22 | OTL: 4 | P: 114
GF: 297 | GA: 153 | PP%: 18.81% | PK%: 85.13%
GM : Mitch | Morale : 96 | Team Overall : 58
Next Games #1055 vs Utica Comets
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Morgan Klimchuk0X100.005842736068628061505961606150508086620
2Laurent Dauphin0X100.005346646169676960526157605751517585610
3Brody Sutter0XX100.006242746083597555675556605650504287610
4Michael Latta0XX100.006345636073537757675955605555535688600
5Adam Musil0X100.006242746078527153675452605250504487590
6Brendan Ranford0X100.005742736069597455505753605350504787590
7Cole Bardreau0XX100.005645656065596261506260606050504254590
8Henrik Samuelsson0XX100.005943716083614256505361606150507884580
9Ryan Martindale (R)0X100.004835806679464156414952515362616387560
10Joel Lowry0X100.005241776073552954505356605650504887550
11Nick Sorensen (R)0X100.004935736969454054305051575358487987540
12Tim Bozon (R)0X100.004935766873454052304649505258477956530
13Nick Jensen0X100.006642836669789869306057726255534186680
14Christian Djoos0X100.005941826762758072305961636653524887650
15Mirco Mueller0X100.006041876681774766305756776153548281640
16Dillon Simpson0X100.006142755075517855304946605350506087570
17John Ramage0X100.006245635072528354304845605250505287560
18Devon Toews0X100.004941775068724760305251605950504387560
Scratches
1Keegan Lowe0X100.005945645074487154304945605250506364550
2Luc Snuggerud0X100.005242735066505756305048605550504420540
3Jyrki Jokipakka0X100.005837776380454648303430654864515520520
TEAM AVERAGE100.00574174607358625842535261565351587658
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Richard Bachman100.00666577726874686767666454604682610
2Stephon Williams (R)100.00455265776047484949505560497187490
Scratches
TEAM AVERAGE100.0056597175646158585858605755598555
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Dallas Eakins70716869696663USA541412,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mirco MuellerToronto Marlies (TOR)D64185876453005561133347713.53%71139521.804812581460111200500.00%000001.0900000553
2Laurent DauphinToronto Marlies (TOR)C81234366455410801602217215810.41%12163620.2027923183123102531158.97%207900120.8111011722
3Nick JensenToronto Marlies (TOR)D8119476616615124114204641289.31%93189923.45101222881990117249130.00%000000.6913000442
4Morgan KlimchukToronto Marlies (TOR)LW813727644839595602706115813.70%17152718.8554927181000101635263.46%10400010.8417010428
5Joshua Ho-SangMaple LeafsLW/RW5117405741954444182581309.34%389917.65189171070002211040.63%6400001.2712001243
6Christian DjoosToronto Marlies (TOR)D812331541548079731786112112.92%67187223.1210313771801125252310.00%000100.5824000124
7Michael LattaToronto Marlies (TOR)C/RW81232750415951011202066014511.17%14124315.36279381810000773267.58%105500020.8000100443
8Devon ToewsToronto Marlies (TOR)D81643496210039467418308.11%57130316.09000215011051100.00%000000.7500000126
9Brody SutterToronto Marlies (TOR)C/RW8117284539360101113188571529.04%10147618.232572317611282102067.67%112600010.6100000223
10Henrik SamuelssonToronto Marlies (TOR)LW/RW81152944412754952187361318.02%5101012.480004221014673169.64%5600000.8716010142
11Brendan RanfordToronto Marlies (TOR)LW81162743422804761192491158.33%7121114.9624622180000024352.50%8000000.7100000122
12Dillon SimpsonToronto Marlies (TOR)D816303670480100316413239.38%57157519.450118750113200000.00%000000.4600000212
13Ross JohnstonMaple LeafsLW57151934203959020128398811.72%572912.80257231350112205050.00%5200010.9300001311
14Adam MusilToronto Marlies (TOR)C81191332261208089136368913.97%995211.76000060112903364.08%92700000.6700000324
15Ryan MartindaleToronto Marlies (TOR)C81131730211002643149401028.72%297412.030111495000006052.92%25700000.6200000031
16John RamageToronto Marlies (TOR)D8171825498401414659163011.86%61144817.88000130000150110.00%000000.3500000022
17Joel LowryToronto Marlies (TOR)LW8141923241003043132391013.03%688210.90000060001211064.81%5400000.5200000020
18Nick SorensenToronto Marlies (TOR)RW8110102012100354614730996.80%584010.37000310000005069.23%3900000.4800000112
19Keegan LoweToronto Marlies (TOR)D52116176358083212410184.17%3982615.8900000000052000.00%000000.4100000010
20Cole BardreauToronto Marlies (TOR)C/RW38471114021356315426.35%352513.83101670000001059.09%4400000.4212000001
21Tim BozonToronto Marlies (TOR)LW31022-7801111192140.00%131510.1700001000020043.75%1600000.1300000000
Team Total or Average15082935518447146844014311289295681019519.91%5442454716.284165106434198141014552090511762.57%595300270.69825133414651
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Richard BachmanToronto Marlies (TOR)81552240.9151.83488561414917620200.78628810952
2Stephon WilliamsToronto Marlies (TOR)10000.8572.732200170000.0000081000
Team Total or Average82552240.9151.83490761415017690200.786288181952


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam MusilToronto Marlies (TOR)C211997-03-26No202 Lbs191 CMNoNoNo1RFAPro & Farm325,000$0$0$NoLink
Brendan RanfordToronto Marlies (TOR)LW261992-05-03No205 Lbs178 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Brody SutterToronto Marlies (TOR)C/RW261991-09-26No203 Lbs196 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Christian DjoosToronto Marlies (TOR)D241994-08-06No169 Lbs183 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Cole BardreauToronto Marlies (TOR)C/RW251993-07-22No193 Lbs178 CMNoNoNo6RFAPro & Farm750,000$0$0$No750,000$750,000$750,000$750,000$750,000$Link
Devon ToewsToronto Marlies (TOR)D241994-02-21No181 Lbs185 CMNoNoNo1RFAPro & Farm325,000$0$0$NoLink
Dillon SimpsonToronto Marlies (TOR)D251993-02-10No194 Lbs188 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Henrik SamuelssonToronto Marlies (TOR)LW/RW241994-02-07No219 Lbs191 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Joel LowryToronto Marlies (TOR)LW261991-11-15No180 Lbs185 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
John RamageToronto Marlies (TOR)D271991-02-07No194 Lbs185 CMNoNoNo1RFAPro & Farm900,000$0$0$NoLink
Jyrki JokipakkaToronto Marlies (TOR)D271991-08-20No215 Lbs191 CMNoNoNo1RFAPro & Farm1,500,000$0$0$No
Keegan LoweToronto Marlies (TOR)D251993-03-29No193 Lbs185 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Laurent DauphinToronto Marlies (TOR)C231995-03-27No180 Lbs185 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Luc SnuggerudToronto Marlies (TOR)D221995-09-18No184 Lbs183 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Michael LattaToronto Marlies (TOR)C/RW271991-05-25No207 Lbs183 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Mirco MuellerToronto Marlies (TOR)D231995-03-21No210 Lbs191 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Morgan KlimchukToronto Marlies (TOR)LW231995-03-02No185 Lbs183 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$Link
Nick JensenToronto Marlies (TOR)D271990-09-21No194 Lbs183 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Nick SorensenToronto Marlies (TOR)RW231994-10-23Yes182 Lbs185 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$
Richard BachmanToronto Marlies (TOR)G311987-07-25No183 Lbs178 CMNoNoNo2UFAPro & Farm750,000$0$0$No750,000$Link
Ryan MartindaleToronto Marlies (TOR)C261991-10-27Yes207 Lbs191 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$
Stephon WilliamsToronto Marlies (TOR)G251993-04-28Yes196 Lbs191 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$
Tim BozonToronto Marlies (TOR)LW241994-03-24Yes201 Lbs185 CMNoNoNo2RFAPro & Farm750,000$0$0$No750,000$
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2324.96195 Lbs185 CM1.96752,174$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Morgan KlimchukLaurent DauphinBrody Sutter31122
2Brendan RanfordMichael LattaCole Bardreau26122
3Joel LowryAdam MusilHenrik Samuelsson23122
4Tim BozonRyan MartindaleNick Sorensen20122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick JensenChristian Djoos35122
2Mirco MuellerDillon Simpson35122
3John RamageDevon Toews25122
4Nick JensenChristian Djoos5122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Morgan KlimchukLaurent DauphinBrody Sutter55122
2Brendan RanfordMichael LattaCole Bardreau45122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick JensenChristian Djoos55122
2Mirco MuellerDillon Simpson45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Laurent DauphinBrody Sutter55122
2Adam MusilHenrik Samuelsson45122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick JensenChristian Djoos55122
2Mirco MuellerDillon Simpson45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Michael Latta55122Nick JensenChristian Djoos55122
2Cole Bardreau45122Mirco MuellerDillon Simpson45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Laurent DauphinMorgan Klimchuk55122
2Michael LattaBrody Sutter45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick JensenChristian Djoos55122
2Mirco MuellerDillon Simpson45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Morgan KlimchukLaurent DauphinBrody SutterNick JensenChristian Djoos
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Adam MusilLaurent DauphinBrody SutterNick JensenMirco Mueller
Extra Forwards
Normal PowerPlayPenalty Kill
Morgan Klimchuk, Michael Latta, Adam MusilAdam Musil, Henrik SamuelssonJoel Lowry
Extra Defensemen
Normal PowerPlayPenalty Kill
Nick Jensen, Mirco Mueller, John RamageDevon ToewsJohn Ramage, Devon Toews
Penalty Shots
Morgan Klimchuk, Henrik Samuelsson, Cole Bardreau, Laurent Dauphin, Brody Sutter
Goalie
#1 : Richard Bachman, #2 : Stephon Williams
Custom OT Lines Forwards
Laurent Dauphin, Morgan Klimchuk, Brody Sutter, Cole Bardreau, Michael Latta, Brendan Ranford, Brendan Ranford, Adam Musil, Henrik Samuelsson, Ryan Martindale, Joel Lowry
Custom OT Lines Defensemen
Nick Jensen, Christian Djoos, Mirco Mueller, Dillon Simpson, John Ramage


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Belleville Senators220000001147110000007251100000042241.0001119300011693801241922982100056401118364125.00%7185.71%11767264966.70%1265215858.62%754119463.15%231917161607524984529
2Brooklyn Wolfpack550000005525322000000200203300000035233101.0005510415903116938012434922982100056226166811100.00%8187.50%11767264966.70%1265215858.62%754119463.15%231917161607524984529
3Bruins de Providence22000000633110000003211100000031241.0006121800116938012529229821000565816203312325.00%100100.00%01767264966.70%1265215858.62%754119463.15%231917161607524984529
4Chicago Wolves531010002271533000000182162010100045-180.800224264021169380122179229821000561103677861815.56%29486.21%01767264966.70%1265215858.62%754119463.15%231917161607524984529
5Cleveland Monsters4130000011110211000007522020000046-220.2501119300011693801210892298210005611637367310110.00%13376.92%01767264966.70%1265215858.62%754119463.15%231917161607524984529
6Colorado Eagles4130000049-52020000027-52110000022020.250459001169380128792298210005610231286611218.18%14564.29%01767264966.70%1265215858.62%754119463.15%231917161607524984529
7Cornwall Aces220000002051511000000122101100000083541.0002037570011693801210392298210005644864055100.00%3166.67%01767264966.70%1265215858.62%754119463.15%231917161607524984529
8Hershey Bears421000108712010001045-12200000042260.7508122000116938012113922982100056873112667114.29%220.00%01767264966.70%1265215858.62%754119463.15%231917161607524984529
9Huberdeau Prison22000000734110000003211100000041341.000712190011693801256922982100056531828476233.33%130100.00%11767264966.70%1265215858.62%754119463.15%231917161607524984529
10Laval Rockets522010001011-1211000003303110100078-160.600101828001169380121409229821000561444638791616.25%17194.12%01767264966.70%1265215858.62%754119463.15%231917161607524984529
11Lehigh Valley Phantoms2110000067-1110000005321010000014-320.5006111700116938012599229821000567615224510220.00%10190.00%01767264966.70%1265215858.62%754119463.15%231917161607524984529
12Manitoba Moose22000000927110000005051100000042241.000913220111693801258922982100056581618353133.33%90100.00%01767264966.70%1265215858.62%754119463.15%231917161607524984529
13Milwaukee Admirals632000101091321000005323110001056-180.6671015250211693801212292298210005613540329016212.50%14192.86%01767264966.70%1265215858.62%754119463.15%231917161607524984529
14Mont-Laurier Sommet21000010743110000003121000001043141.000781500116938012559229821000564815283012200.00%10280.00%01767264966.70%1265215858.62%754119463.15%231917161607524984529
15Oscars de Hollywood440000001811733000000131121100000050581.00018345203116938012245922982100056185327311100.00%160100.00%11767264966.70%1265215858.62%754119463.15%231917161607524984529
16PV Sharapovas22000000642110000002111100000043141.0006111700116938012629229821000564918636800.00%30100.00%01767264966.70%1265215858.62%754119463.15%231917161607524984529
17Red Deer Spartans4120010058-32020000014-32100010044030.375591400116938012789229821000568725415910220.00%18288.89%01767264966.70%1265215858.62%754119463.15%231917161607524984529
18Rockford IceHogs41200010910-12020000038-52100001062440.5009142300116938012899229821000561152536611516.67%13469.23%11767264966.70%1265215858.62%754119463.15%231917161607524984529
19San Diego Gulls41200001712-52010000148-42110000034-130.375714210011693801211192298210005686293070500.00%11372.73%01767264966.70%1265215858.62%754119463.15%231917161607524984529
20St-Jerome Panthers200010017701000000145-11000100032130.7507132000116938012579229821000565118172212200.00%4175.00%01767264966.70%1265215858.62%754119463.15%231917161607524984529
21Syracuse Crunch220000002002011000000130131100000070741.000203858021169380121919229821000566283011100.00%30100.00%01767264966.70%1265215858.62%754119463.15%231917161607524984529
22Tigres Victoriaville2110000034-11010000013-21100000021120.5003580011693801256922982100056488303915213.33%11190.91%01767264966.70%1265215858.62%754119463.15%231917161607524984529
Total81472203153297153144402313000131537875412490314014475691140.7042975298260141169380122932922982100056176951165713432023818.81%2694085.13%61767264966.70%1265215858.62%754119463.15%231917161607524984529
24Tucson Roadrunners2010000148-41000000134-11010000014-310.2504711001169380123792298210005657152222200.00%8362.50%01767264966.70%1265215858.62%754119463.15%231917161607524984529
25Utica Comets42100010161241010000036-332000010136760.7501626420011693801211292298210005612733387817317.65%15473.33%11767264966.70%1265215858.62%754119463.15%231917161607524984529
26Wilkes-Barrie Penguins4400000016313220000009182200000072581.0001631470111693801224992298210005632718597114.29%80100.00%01767264966.70%1265215858.62%754119463.15%231917161607524984529
_Since Last GM Reset81472203153297153144402313000131537875412490314014475691140.7042975298260141169380122932922982100056176951165713432023818.81%2694085.13%61767264966.70%1265215858.62%754119463.15%231917161607524984529
_Vs Conference5326190214117310172251112000117952272815702130944945660.62317330948208116938012186092298210005611633464028551331612.03%1623081.48%31767264966.70%1265215858.62%754119463.15%231917161607524984529
_Vs Division1814500020594019953000102922799200010301812320.889591011600311693801261692298210005638911517832032825.00%731283.56%31767264966.70%1265215858.62%754119463.15%231917161607524984529

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
81114W2297529826293217695116571343014
All Games
GPWLOTWOTL SOWSOLGFGA
8147223153297153
Home Games
GPWLOTWOTL SOWSOLGFGA
402313001315378
Visitor Games
GPWLOTWOTL SOWSOLGFGA
41249314014475
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2023818.81%2694085.13%6
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
922982100056116938012
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1767264966.70%1265215858.62%754119463.15%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
231917161607524984529


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-08-157Toronto Marlies11Brooklyn Wolfpack0WBoxScore
2 - 2018-08-1620Oscars de Hollywood1Toronto Marlies6WBoxScore
4 - 2018-08-1834Toronto Marlies3Laval Rockets2WXBoxScore
5 - 2018-08-1945Chicago Wolves0Toronto Marlies11WBoxScore
6 - 2018-08-2047Toronto Marlies0San Diego Gulls2LBoxScore
7 - 2018-08-2160Toronto Marlies4Utica Comets2WBoxScore
8 - 2018-08-2279Oscars de Hollywood0Toronto Marlies5WBoxScore
10 - 2018-08-2494Toronto Marlies2Chicago Wolves1WXBoxScore
11 - 2018-08-25103Milwaukee Admirals1Toronto Marlies3WBoxScore
12 - 2018-08-26111Toronto Marlies1Milwaukee Admirals4LBoxScore
13 - 2018-08-27128Cleveland Monsters3Toronto Marlies7WBoxScore
15 - 2018-08-29145Toronto Marlies4Utica Comets3WXXBoxScore
16 - 2018-08-30156Wilkes-Barrie Penguins0Toronto Marlies7WBoxScore
17 - 2018-08-31172Chicago Wolves2Toronto Marlies5WBoxScore
18 - 2018-09-01184Toronto Marlies2Cleveland Monsters3LBoxScore
20 - 2018-09-03199Toronto Marlies2Red Deer Spartans1WBoxScore
21 - 2018-09-04202Brooklyn Wolfpack0Toronto Marlies8WBoxScore
23 - 2018-09-06223Toronto Marlies3Bruins de Providence1WBoxScore
24 - 2018-09-07227Brooklyn Wolfpack0Toronto Marlies12WBoxScore
25 - 2018-09-08248Tigres Victoriaville3Toronto Marlies1LR3BoxScore
26 - 2018-09-09265Toronto Marlies5Utica Comets1WBoxScore
27 - 2018-09-10272Toronto Marlies1Lehigh Valley Phantoms4LBoxScore
28 - 2018-09-11282Laval Rockets2Toronto Marlies0LBoxScore
29 - 2018-09-12303Cornwall Aces2Toronto Marlies12WBoxScore
30 - 2018-09-13316Toronto Marlies2Tigres Victoriaville1WR3BoxScore
31 - 2018-09-14327Toronto Marlies3Wilkes-Barrie Penguins1WBoxScore
32 - 2018-09-15332Toronto Marlies1Tucson Roadrunners4LBoxScore
33 - 2018-09-16343Mont-Laurier Sommet1Toronto Marlies3WBoxScore
35 - 2018-09-18363Huberdeau Prison2Toronto Marlies3WR3BoxScore
37 - 2018-09-20377Cleveland Monsters2Toronto Marlies0LBoxScore
38 - 2018-09-21389Toronto Marlies4Manitoba Moose2WBoxScore
40 - 2018-09-23401Toronto Marlies2Cleveland Monsters3LBoxScore
42 - 2018-09-25413Wilkes-Barrie Penguins1Toronto Marlies2WBoxScore
43 - 2018-09-26430Oscars de Hollywood0Toronto Marlies2WBoxScore
44 - 2018-09-27442Toronto Marlies2Laval Rockets1WBoxScore
46 - 2018-09-29458Toronto Marlies4PV Sharapovas3WBoxScore
47 - 2018-09-30462Hershey Bears2Toronto Marlies3WXXBoxScore
48 - 2018-10-01481Toronto Marlies3Milwaukee Admirals2WXXBoxScore
50 - 2018-10-03490Bruins de Providence2Toronto Marlies3WBoxScore
51 - 2018-10-04510PV Sharapovas1Toronto Marlies2WBoxScore
53 - 2018-10-06521Toronto Marlies12Brooklyn Wolfpack1WBoxScore
55 - 2018-10-08536Syracuse Crunch0Toronto Marlies13WBoxScore
56 - 2018-10-09548Toronto Marlies12Brooklyn Wolfpack1WBoxScore
57 - 2018-10-10561St-Jerome Panthers5Toronto Marlies4LXXBoxScore
58 - 2018-10-11574Toronto Marlies7Syracuse Crunch0WBoxScore
59 - 2018-10-12580Toronto Marlies8Cornwall Aces3WBoxScore
61 - 2018-10-14591Milwaukee Admirals2Toronto Marlies0LBoxScore
62 - 2018-10-15613Manitoba Moose0Toronto Marlies5WBoxScore
63 - 2018-10-16621Toronto Marlies4Belleville Senators2WBoxScore
64 - 2018-10-17629Toronto Marlies3San Diego Gulls2WBoxScore
66 - 2018-10-19645Lehigh Valley Phantoms3Toronto Marlies5WBoxScore
68 - 2018-10-21665Laval Rockets1Toronto Marlies3WBoxScore
69 - 2018-10-22671Toronto Marlies1Milwaukee Admirals0WBoxScore
70 - 2018-10-23681Toronto Marlies4Mont-Laurier Sommet3WXXBoxScore
71 - 2018-10-24695San Diego Gulls4Toronto Marlies3LXXBoxScore
72 - 2018-10-25711Toronto Marlies5Oscars de Hollywood0WBoxScore
73 - 2018-10-26720Colorado Eagles4Toronto Marlies1LBoxScore
74 - 2018-10-27740Toronto Marlies2Chicago Wolves4LBoxScore
76 - 2018-10-29746Colorado Eagles3Toronto Marlies1LBoxScore
78 - 2018-10-31769Milwaukee Admirals0Toronto Marlies2WBoxScore
79 - 2018-11-01778Toronto Marlies2Red Deer Spartans3LXBoxScore
80 - 2018-11-02792Toronto Marlies2Colorado Eagles1WBoxScore
81 - 2018-11-03803Toronto Marlies4Wilkes-Barrie Penguins1WBoxScore
82 - 2018-11-04806Rockford IceHogs3Toronto Marlies2LBoxScore
84 - 2018-11-06828Chicago Wolves0Toronto Marlies2WBoxScore
86 - 2018-11-08844Toronto Marlies2Rockford IceHogs1WXXBoxScore
87 - 2018-11-09854Hershey Bears3Toronto Marlies1LBoxScore
88 - 2018-11-10861Toronto Marlies3St-Jerome Panthers2WXBoxScore
90 - 2018-11-12879Tucson Roadrunners4Toronto Marlies3LXXBoxScore
91 - 2018-11-13899Red Deer Spartans2Toronto Marlies1LBoxScore
93 - 2018-11-15918Red Deer Spartans2Toronto Marlies0LBoxScore
96 - 2018-11-18943Belleville Senators2Toronto Marlies7WBoxScore
97 - 2018-11-19953Toronto Marlies2Hershey Bears1WBoxScore
98 - 2018-11-20966Toronto Marlies2Laval Rockets5LBoxScore
99 - 2018-11-21975Rockford IceHogs5Toronto Marlies1LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
101 - 2018-11-23993San Diego Gulls4Toronto Marlies1LBoxScore
102 - 2018-11-24997Toronto Marlies4Rockford IceHogs1WBoxScore
103 - 2018-11-251013Toronto Marlies0Colorado Eagles1LBoxScore
105 - 2018-11-271023Utica Comets6Toronto Marlies3LBoxScore
106 - 2018-11-281026Toronto Marlies2Hershey Bears1WBoxScore
107 - 2018-11-291033Toronto Marlies4Huberdeau Prison1WR3BoxScore
110 - 2018-12-021055Utica Comets-Toronto Marlies-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
1 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,048,300$ 1,730,000$ 1,730,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,650,816$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 4 18,956$ 75,824$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
3181472203153297153144402313000131537875412490314014475691142975298260141169380122932922982100056176951165713432023818.81%2694085.13%61767264966.70%1265215858.62%754119463.15%231917161607524984529
Total Regular Season81472203153297153144402313000131537875412490314014475691142975298260141169380122932922982100056176951165713432023818.81%2694085.13%61767264966.70%1265215858.62%754119463.15%231917161607524984529